Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38535953

RESUMO

Recent events concerning jet fuel contamination of drinking water have shown that we need a better understanding of the effects of ingested jet fuel. To this end, a reproductive study with ingested jet fuel in rats was undertaken with relatively high concentrations of Jet Propellant (JP)-5 along with a human estrogen receptor activation in vitro assay using JP-5, JP-8, and an alternative jet fuel derived from the camelina plant referred to as HydroRenewable Jet (HRJ) fuel, to help evaluate potential effects of ingested jet fuel. The results of the in vivo study provide evidence that JP-5 can act as an endocrine disruptor, with specific observations including altered hormone levels with JP-5 exposure (significantly lower estradiol levels in male rats and significantly increased Dehydroepiandrosterone levels in females), and a decreased male/female offspring ratio. The in vitro hormone receptor activation assay indicated that JP-5 and JP-8 are capable of upregulating human estrogen receptor (ER) activity, while HRJ was not active in the ER assay. The jet fuels were not able to activate androgen or glucocorticoid receptors in further in vitro assays. These results infer potential endocrine disruption associated with JP-5, with activation of the estrogen receptor as one potential mechanism of action.

2.
Brain Stimul ; 15(5): 1101-1110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35970317

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) improves cognition in humans and rodents, but the effects of a single session of VNS on performance and plasticity are not well understood. OBJECTIVE: Behavioral performance and hippocampal (HC) electrophysiology/neurotrophin expression were measured in healthy adult rats after VNS paired training to investigate changes in cognition and synaptic plasticity. METHODS: Platinum/iridium electrodes were surgically implanted around the left cervical branch of the VN of anesthetized male Sprague-Dawley rats (N = 47). VNS (100 µs biphasic pulses, 30 Hz, 0.8 mA) paired Novel Object Recognition (NOR)/Passive Avoidance Task (PAT) were assessed 24 h after training and post-mortem tissue was collected 48 h after VNS (N = 28). Electrophysiology recordings were collected using a microelectrode array system to assess functional effects on HC slices 90 min after VNS (N = 19). Sham received the same treatment without VNS and experimenters were blinded. RESULTS: Stimulated rats exhibited improved performance in NOR (p < 0.05, n = 12) and PAT (p < 0.05, n = 14). VNS enhanced long-term potentiation (p < 0.05, n = 7-12), and spontaneous spike amplitude (p < 0.05, n = 7-12) and frequency (p < 0.05, n = 7-12) in the CA1. Immunohistochemical analysis found increased brain-derived neurotrophic factor expression in the CA1 (p < 0.05, n = 8-9) and CA2 (p < 0.01, n = 7-8). CONCLUSION: These findings suggest that our VNS parameters promote synaptic plasticity and target the CA1, which may mediate the positive cognitive effects of VNS. This study significantly contributes to a better understanding of VNS mediated HC synaptic plasticity, which may improve clinical utilization of VNS for cognitive enhancement.


Assuntos
Plasticidade Neuronal , Estimulação do Nervo Vago , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição , Eletrodos Implantados , Hipocampo/fisiologia , Irídio/metabolismo , Masculino , Plasticidade Neuronal/fisiologia , Platina/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Vago/fisiologia
3.
Front Neurosci ; 16: 1069484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620466

RESUMO

Transcranial direct current stimulation (tDCS) has shown therapeutic potential to mitigate symptoms of various neurological disorders. Studies from our group and others used rodent models to demonstrate that tDCS modulates synaptic plasticity. We previously showed that 30 min of 0.25 mA tDCS administered to rats induced significant enhancement in the synaptic plasticity of hippocampal neurons. It has also been shown that tDCS induces expression of proteins known to mediate synaptic plasticity. This increase in synaptic plasticity may underly the observed therapeutic benefits of tDCS. However, the anti-inflammatory benefits of tDCS have not been thoroughly elucidated. Here we report that three sessions of tDCS spaced 1-3 weeks apart can significantly reduce levels of several inflammatory cytokines in brains of healthy rats. Rats receiving tDCS experienced enhanced synaptic plasticity without detectable improvement in behavioral tests or significant changes in astrocyte activation. The tDCS-mediated reduction in inflammatory cytokine levels supports the potential use of tDCS as a countermeasure against inflammation and offers additional support for the hypothesis that cytokines contribute to the modulation of synaptic plasticity.

4.
Front Endocrinol (Lausanne) ; 12: 624132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796070

RESUMO

Described almost 50 years ago, the glycerophosphocholine lipid mediator Platelet-activating factor (PAF) has been implicated in many pathologic processes. Indeed, elevated levels of PAF can be measured in response to almost every type of pathology involving inflammation and cell damage/death. In this review, we provide evidence for PAF involvement in pathologic processes, with focus on cancer, the nervous system, and in photobiology. Importantly, recent insights into how PAF can generate and travel via bioactive extracellular vesicles such as microvesicle particles (MVP) are presented. What appears to be emerging from diverse pathologies in different organ systems is a common theme where pro-oxidative stressors generate oxidized glycerophosphocholines with PAF agonistic effects, which then trigger more enzymatic PAF synthesis via the PAF receptor. A downstream consequence of PAF receptor activation is the generation and release of MVP which provide a mechanism to transmit PAF as well as other bioactive agents. The knowledge gaps which when addressed could result in novel therapeutic strategies are also discussed. Taken together, an enhanced understanding of the PAF family of lipid mediators is essential in our improved comprehension of the relationship amongst the diverse cutaneous, cancerous, neurologic and systemic pathologic processes.


Assuntos
Neoplasias/metabolismo , Estresse Oxidativo/fisiologia , Fator de Ativação de Plaquetas/metabolismo , Animais , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Humanos , Neoplasias/patologia , Pele/metabolismo , Pele/patologia
5.
Life Sci ; 274: 119333, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33705732

RESUMO

AIMS: Gulf War illness (GWI) is a disorder affecting military personnel deployed in the Gulf War (GW) from 1990 to 1991. Here, we will use a rat model of GWI to evaluate hippocampal function and cytokine levels. MATERIALS AND METHODS: Rats were exposed to diethyltoluamide and permethrin via dermal absorption and pyridostigmine bromide via gavage with or without a 5-min restraint for 28 days. Immediate and delayed effects of GW chemical exposure were evaluated using electrophysiology to quantitate hippocampal function, behavioral tests to assess cognitive effects and biochemical assays to measure neurotransmitter and cytokine levels. KEY FINDINGS: Behavioral data revealed a statistically significant increase in motor activity at 3 months following completion of exposures, potentially indicating increased excitability, and/or restlessness. Electrophysiology data revealed statistically significant changes in paired pulse facilitation and input-output function of CA1 hippocampal neurons within 24 h and 3 months following completion of exposures. There was also a statistically significant reduction in the frequency of spontaneous firing activity of hippocampal neurons within 24 h following exposures. Naïve hippocampal slices directly incubated in GW chemicals also resulted in similar changes in electrophysiological parameters. Biochemical measurements revealed reduced hippocampal glutamate level at 3 months post-exposure. Furthermore, there was a statistically significant increase in plasma and hippocampal levels of IL-13, as well as decrease in plasma level of IL-1ß. SIGNIFICANCE: Our data support an effect on glutamate signaling within the hippocampus as indicated by changes in PPF and hippocampal level of glutamate, with some activation of T helper type 2 immune response.


Assuntos
Citocinas/metabolismo , Modelos Animais de Doenças , Hipocampo/patologia , Mediadores da Inflamação/metabolismo , Inflamação/complicações , Síndrome do Golfo Pérsico/patologia , Animais , Comportamento Animal , Hipocampo/imunologia , Hipocampo/metabolismo , Potenciação de Longa Duração , Masculino , Síndrome do Golfo Pérsico/etiologia , Ratos , Ratos Sprague-Dawley
6.
J Toxicol Environ Health A ; 84(9): 357-388, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33380269

RESUMO

This dermal study tested the potential toxicity of grade 3 (G3) and 4 (G4) organophosphate-containing aircraft engine oils in both new (G3-N, G4-N) and used states (G3-U, G4-U) to alter esterase activities in blood, brain and liver tissues, clinical chemistry parameters, and electrophysiology of hippocampal neurons. A 300 µl volume of undiluted oil was applied in Hill Top Chamber Systems®, then attached to fur-free test sites on backs of male and female Sprague Dawley rats for 6 hr/day, 5 days/week for 21 days. Recovery rats received similar treatments and kept for 14 days post-exposure to screen for reversibility, persistence, or delayed occurrence of toxicity. In brain, both versions of G3 and G4 significantly decreased (32-41%) female acetylcholinesterase (AChE) activity while in males only G3-N and G4-N reduced (33%) AChE activity. Oils did not markedly affect AChE in liver, regardless of gender. In whole blood, G3-U decreased female AChE (29%) which persisted during recovery (32%). G4-N significantly lowered (29%) butyrylcholinesterase (BChE) in male plasma, but this effect was resolved during recovery. For clinical chemistry indices, only globulin levels in female plasma significantly increased following G3-N or G4-N exposure. Preliminary electrophysiology data suggested that effects of both versions of G3 and G4 on hippocampal function may be gender dependent. Aircraft maintenance workers may be at risk if precautions are not taken to minimize long-term aircraft oil exposure.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Poluentes Ambientais/efeitos adversos , Enzimas/sangue , Óleos/efeitos adversos , Aeronaves , Animais , Sangue/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Feminino , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Plasma/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
7.
Neurobiol Learn Mem ; 167: 107126, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31765800

RESUMO

An increasing number of studies using human subjects substantiate the use of transcranial direct current stimulation (tDCS) as a noninvasive approach to treat various neurological symptoms. tDCS has been tested in conditions from motor to cognition dysfunctions. Performance enhancement of healthy subjects using tDCS has also been explored. The underlying physiological mechanism for tDCS effects is hypothesized to be through changes in neuroplasticity and we have previously demonstrated that in vivo anodal tDCS can enhance neuroplasticity of hippocampal CA1 neurons. The purpose of this study was to determine whether the underlying electrophysiological changes that occur following in vivo tDCS are polarity specific. We also examined both the CA1 and CA3 regions of the hippocampus to determine whether the tDCS effects were subfield specific. We conducted in vivo tests of cathodal tDCS versus anodal tDCS on synaptic plasticity of CA1 and CA3 neurons of male rats. In each region we assessed long term potentiation (LTP), paired pulse facilitation (PPF) and long term depression (LTD). In the CA1 region, we found anodal tDCS significantly enhanced not only LTP and PPF, but also LTD. There was no statistical difference in LTP, PPF or LTD of hippocampal CA1 neurons resulting from cathodal tDCS. Neither anodal nor cathodal tDCS induced significant changes in neuroplasticity of hippocampal CA3 neurons. Results indicate that the effects of tDCS are subfield specific and polarity dependent with anodal tDCS having greater impact on synaptic activity in the rat hippocampus than cathodal tDCS.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Potenciação de Longa Duração , Neurônios/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Potenciais de Ação , Animais , Masculino , Ratos Sprague-Dawley
8.
J Toxicol Environ Health A ; 81(10): 314-332, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29498600

RESUMO

Exposure to fuels continues to be a concern in both military and general populations. The aim of this study was to examine effects of in vivo rat repeated exposures to different types of jet fuel utilizing microelectrode arrays for comparative electrophysiological (EP) measurements in hippocampal slices. Animals were exposed to increasing concentrations of four jet fuels, Jet Propellant (JP)-8, Jet A, JP-5, or synthetic Fischer Tropsch (FT) fuel via whole-body inhalation for 20 d (6 hr/d, 5 d/week for 28 d) and synaptic transmission as well as behavioral performance were assessed. Our behavioral studies indicated no significant changes in behavioral performance in animals exposed to JP-8, Jet A, or JP-5. A significant deviation in learning pattern during the Morris water maze task was observed in rats exposed to the highest concentration of FT (2000 mg/m3). There were also significant differences in the EP profile of hippocampal neurons from animals exposed to JP-8, Jet A, JP-5, or FT compared to control air. However, these differences were not consistent across fuels or dose dependent. As expected, patterns of EP alterations in brain slices from JP-8 and Jet A exposures were more similar compared to those from JP-5 and FT. Further longitudinal investigations are needed to determine if these EP effects are transient or persistent. Such studies may dictate if and how one may use EP measurements to indicate potential susceptibility to neurological impairments, particularly those that result from inhalation exposure to chemicals or mixtures.


Assuntos
Hipocampo/efeitos dos fármacos , Hidrocarbonetos/efeitos adversos , Exposição por Inalação/efeitos adversos , Memória/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Aprendizagem Espacial/efeitos dos fármacos , Animais , Fenômenos Eletrofisiológicos , Hipocampo/fisiologia , Humanos , Masculino , Microeletrodos , Modelos Animais , Neurônios/fisiologia , Ratos , Ratos Endogâmicos F344
9.
J Neurosci ; 35(37): 12824-32, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377469

RESUMO

Investigations into the use of transcranial direct current stimulation (tDCS) in relieving symptoms of neurological disorders and enhancing cognitive or motor performance have exhibited promising results. However, the mechanisms by which tDCS effects brain function remain under scrutiny. We have demonstrated that in vivo tDCS in rats produced a lasting effect on hippocampal synaptic plasticity, as measured using extracellular recordings. Ex vivo preparations of hippocampal slices from rats that have been subjected to tDCS of 0.10 or 0.25 mA for 30 min followed by 30 min of recovery time displayed a robust twofold enhancement in long-term potentiation (LTP) induction accompanied by a 30% increase in paired-pulse facilitation (PPF). The magnitude of the LTP effect was greater with 0.25 mA compared with 0.10 mA stimulations, suggesting a dose-dependent relationship between tDCS intensity and its effect on synaptic plasticity. To test the persistence of these observed effects, animals were stimulated in vivo for 30 min at 0.25 mA and then allowed to return to their home cage for 24 h. Observation of the enhanced LTP induction, but not the enhanced PPF, continued 24 h after completion of 0.25 mA of tDCS. Addition of the NMDA blocker AP-5 abolished LTP in both control and stimulated rats but maintained the PPF enhancement in stimulated rats. The observation of enhanced LTP and PPF after tDCS demonstrates that non-invasive electrical stimulation is capable of modifying synaptic plasticity. SIGNIFICANCE STATEMENT: Researchers have used brain stimulation such as transcranial direct current stimulation on human subjects to alleviate symptoms of neurological disorders and enhance their performance. Here, using rats, we have investigated the potential mechanisms of how in vivo brain stimulation can produce such effect. We recorded directly on viable brain slices from rats after brain stimulation to detect lasting changes in pattern of neuronal activity. Our results showed that 30 min of brain stimulation in rats induced a robust enhancement in synaptic plasticity, a neuronal process critical for learning and memory. Understanding such molecular effects will lead to a better understanding of the mechanisms by which brain stimulation produces its effects on cognition and performance.


Assuntos
Região CA1 Hipocampal/fisiologia , Estimulação Elétrica , Potenciação de Longa Duração/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Microeletrodos , Ratos , Ratos Sprague-Dawley
10.
J Physiol ; 591(10): 2463-73, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23401610

RESUMO

Complexins (Cplxs) are small, SNARE-associated proteins believed to regulate fast, calcium-triggered exocytosis. However, studies have pointed to either an inhibitory and/or facilitatory role in exocytosis, and the role of Cplxs in synchronizing exocytosis is relatively unexplored. Here, we compare the function of two types of complexin, Cplx 1 and 2, in two model systems of calcium-dependent exocytosis. In mouse neuromuscular junctions (NMJs), we find that lack of Cplx 1 significantly reduces and desynchronizes calcium-triggered synaptic transmission; furthermore, high-frequency stimulation elicits synaptic facilitation, instead of normal synaptic depression, and the degree of facilitation is highly sensitive to the amount of cytoplasmic calcium buffering. In Cplx 2-null adrenal chromaffin cells, we also find decreased and desynchronized evoked release, and identify a significant reduction in the vesicle pool close to the calcium channels (immediately releasable pool, IRP). Viral transduction with either Cplx 1 or 2 rescues both the size of the evoked response and the synchronicity of release, and it restores the IRP size. Our findings in two model systems are mutually compatible and indicate a role of Cplx 1 and 2 in facilitating vesicle priming, and also lead to the new hypothesis that Cplxs may synchronize vesicle release by promoting coupling between secretory vesicles and calcium channels.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Canais de Cálcio/fisiologia , Células Cromafins/fisiologia , Exocitose/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Vesículas Secretórias/fisiologia , Animais , Células HEK293 , Humanos , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Músculo Esquelético/fisiologia , Junção Neuromuscular/fisiologia , Sinapses/fisiologia
11.
ACS Chem Neurosci ; 4(4): 585-93, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23419103

RESUMO

Ruthenium diimine complexes have previously been used to facilitate light-activated electron transfer in the study of redox metalloproteins. Excitation at 488 nm leads to a photoexcited state, in which the complex can either accept or donate an electron, respectively, in the presence of a soluble sacrificial reductant or oxidant. Here, we describe a novel application of these complexes in mediating light-induced changes in cellular electrical activity. We demonstrate that RubpyC17 ([Ru(bpy)(2)(bpy-C17)](2+), where bpy is 2,2'-bipyridine and bpy-C17 is 2,2'-4-heptadecyl-4'-methyl-bipyridine), readily incorporates into the plasma membrane of cells, as evidenced by membrane-confined luminescence. Excitable cells incubated in RubpyC17 and then illuminated at 488 nm in the presence of the reductant ascorbate undergo membrane depolarization leading to firing of action potentials. In contrast, the same experiment performed with the oxidant ferricyanide, instead of ascorbate, leads to hyperpolarization. These experiments suggest that illumination of membrane-associated RubpyC17 in the presence of ascorbate alters the cell membrane potential by increasing the negative charge on the outer face of the cell membrane capacitor, effectively depolarizing the cell membrane. We rule out two alternative explanations for light-induced membrane potential changes, using patch clamp experiments: (1) light-induced direct interaction of RubpyC17 with ion channels and (2) light-induced membrane perforation. We show that incorporation of RubpyC17 into the plasma membrane of neuroendocrine cells enables light-induced secretion as monitored by amperometry. While the present work is focused on ruthenium diimine complexes, the findings point more generally to broader application of other transition metal complexes to mediate light-induced biological changes.


Assuntos
Potenciais de Ação/fisiologia , Células Cromafins/química , Nanotecnologia/métodos , Estimulação Luminosa/métodos , Rutênio/química , Animais , Carbono/química , Carbono/metabolismo , Fibra de Carbono , Membrana Celular/química , Membrana Celular/metabolismo , Células Cromafins/metabolismo , Eletroquímica , Células HEK293 , Humanos , Luminescência , Camundongos , Camundongos Endogâmicos C57BL , Optogenética/métodos , Rutênio/metabolismo
12.
PLoS One ; 7(4): e35521, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22530041

RESUMO

Many research studies use immortalized cell lines as surrogates for primary beta- cells. We describe the production and use of a novel "indirect" dual-fluorescent reporter system that leads to mutually exclusive expression of EGFP in insulin-producing (INS(+)) beta-cells or mCherry in non-beta-cells. Our system uses the human insulin promoter to initiate a Cre-mediated shift in reporter color within a single transgene construct and is useful for FACS selection of cells from single cultures for further analysis. Application of our reporter to presumably clonal HIT-T15 insulinoma cells, as well as other presumably clonal lines, indicates that these cultures are in fact heterogeneous with respect to INS(+) phenotype. Our strategy could be easily applied to other cell- or tissue-specific promoters. We anticipate its utility for FACS purification of INS(+) and glucose-responsive beta-like-cells from primary human islet cell isolates or in vitro differentiated pluripotent stem cells.


Assuntos
Linhagem Celular Tumoral , Genes Reporter , Células Secretoras de Insulina/metabolismo , Cálcio/metabolismo , Regulação Neoplásica da Expressão Gênica , Ordem dos Genes , Vetores Genéticos , Humanos , Insulina/genética , Insulinoma , Ativação do Canal Iônico , Fenótipo , Regiões Promotoras Genéticas
13.
Ann N Y Acad Sci ; 1152: 7-17, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19161372

RESUMO

Fluorescent fusion proteins are an important tool for the study of vesicle trafficking and exocytosis, especially when combined with newer types of microscopy. We previously reported that the design of a vesicle-targeted fluorescent fusion construct strongly influences the kinetics of fluorescence change at exocytosis. In the present study we demonstrate that the cell in which a construct is expressed also affects the kinetics of fluorescence change at exocytosis. We fused enhanced green fluorescent protein to the carboxy terminus of the vesicular cargo protein rodent islet amyloid polypeptide. The two proteins were separated by a "linker" sequence of 18 amino acids. We then compared kinetics of fluorescence change at exocytosis for this fluorescent cargo protein expressed in three different types of peptidergic endocrine cell: pancreatic alpha cell, pancreatic beta cell, and adrenal chromaffin cell. In resting cells of all three types, fluorescent spots of similar size and membrane-proximal density appeared near the plasma membrane as expected if the probe is stored in large dense-core secretory vesicles. Upon stimulation, the fluorescent spots displayed sudden changes in fluorescence intensity that were consistent with exocytosis. In beta and alpha cells the fluorescent spots consistently brightened and persisted, whereas in chromaffin cells the fluorescent spots always dispersed rapidly. Thus, for fluorescent cargo proteins in peptidergic endocrine cells, cell type influences the kinetics of fluorescence change at exocytosis. Together with our previous findings, this observation strongly highlights the fact that the behavior of vesicle-targeted fluorescent cargo may be unrelated to that of native cargo, and it emphasizes the need for caution in interpreting fluorescence kinetics in terms of an exocytosis mechanism.


Assuntos
Células Endócrinas/metabolismo , Exocitose , Proteínas Luminescentes/análise , Proteínas Luminescentes/metabolismo , Peptídeos/análise , Peptídeos/metabolismo , Animais , Bovinos , Células Cultivadas , Cinética , Masculino , Pâncreas/metabolismo , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Nat Neurosci ; 8(4): 435-42, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15768038

RESUMO

Voltage-gated Ca(2+) channels (VGCCs) are important in regulating a variety of cellular functions in neurons. It remains poorly understood how VGCCs with different functions are sorted within neurons. Here we show that the t-complex testis-expressed 1 (tctex1) protein, a light-chain subunit of the dynein motor complex, interacts directly and selectively with N- and P/Q-type Ca(2+) channels, but not L-type Ca(2+) channels. The interaction is insensitive to Ca(2+). Overexpression in hippocampal neurons of a channel fragment containing the binding domain for tctex1 significantly decreases the surface expression of endogenous N- and P/Q-type Ca(2+) channels but not L-type Ca(2+) channels, as determined by immunostaining. Furthermore, disruption of the tctex1-Ca(2+) channel interaction significantly reduces the Ca(2+) current density in hippocampal neurons. These results underscore the importance of the specific tctex1-channel interaction in determining sorting and trafficking of neuronal Ca(2+) channels with different functionalities.


Assuntos
Canais de Cálcio/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Animais , Western Blotting/métodos , Cálcio/farmacologia , Canais de Cálcio/química , Canais de Cálcio/classificação , Carbodi-Imidas/metabolismo , Carbodi-Imidas/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Dineínas , Capacitância Elétrica , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Imuno-Histoquímica/métodos , Imunoprecipitação/métodos , Ativação do Canal Iônico , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Dados de Sequência Molecular , Mutagênese/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Transfecção/métodos , Técnicas do Sistema de Duplo-Híbrido , Região do Complexo-t do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...